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Abstract. An accurate and systematic equation of state for the hard-core one-component plasma (HCOCP)
is obtained. The result is based on the Hubbard-Schofield transformation which yields the field-theoretical
Hamiltonian, with coefficients expressed in terms of equilibrium correlation functions of the reference
hard-core fluid. Explicit calculations were performed using the Gaussian approximation for the effective
Hamiltonian and known thermodynamic and structural properties of the reference hard-core fluid. For
small values of the plasma parameter Γ and packing fraction the Debye-Hückel result is recovered, while
for Γ � 1, the excess free energy Fex and internal Uex energy depend linearly on Γ . The obtained expression
for Uex is in a good agreement with the available Monte Carlo data for the HCOCP. We also analyse the
validity of the widely used approximation, which represents the free energy as a sum of the hard-core and
electrostatic part.

PACS. 52.25.Kn Thermodynamics of plasmas – 61.20.Gy Theory and models of liquid structure –
05.20.-y Classical statistical mechanics

1 Introduction

The one component plasma (OCP) is one of the basic
models in the field of charged systems. The OCP model
is formulated as a system of point particles, interacting
via the Coulomb potential, which move in a uniform neu-
tralizing background. It has found important physical ap-
plications in a variety of fields ranging from terrestrial
physics, through important technological applications to
cosmology [1–4]. As a reference model it is used in many
areas of soft condensed matter, such as colloidal and poly-
electrolyte solutions, e.g. [5–8], etc. All thermodynamic
properties of the OCP depend only on the dimension-
less plasma parameter Γ = lB/ac, where lB = e2/kBT
is the Bjerrum length (e is the charge of the particles, kB

is the Boltzmann’s constant, T is the temperature) and
ac = (3/4πρ)1/3 is the ion-sphere radius with ρ = N/Ω
being the concentration of particles (N is the number
of particles, Ω is the volume of the system). Using a
field-theoretical approach, a fairly accurate and simple ex-
pression for the equation of state of the OCP has been
obtained within the Gaussian approximation for the ef-
fective Hamiltonian [9]; contrary to previous calculations,
e.g. [10,11], this gives a correct behavior for the thermo-
dynamic functions in the full range of Γ (see [9] and ref-
erences therein) and does not have fitting parameters as
e.g. in [11,12]. In [13] field-theoretical calculations for the
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equation of state, going beyond the Gaussian approxima-
tion, have been performed, showing that corrections to the
Gaussian theory are rather small.

A closely related model – the hard-core one compo-
nent plasma (HCOCP) incorporating a hard core repul-
sion between ions – gives a more satisfactory description
of the short-range electrostatic correlations. The impor-
tance of this model follows also from the fact that it be-
longs to the class of the so-called primitive models used
to describe molten salts [14], electrolytes [15], liquid met-
als [16–18] and charged colloidal solutions [19–21]. The
mean spherical approximation (MSA) [22] was applied to
account for both the hard-core and electrostatic interac-
tions in this system [23,24]. Although it has an analytical
solution, it exhibits sometimes unphysical negative con-
tact values for the pair correlation function, which has to
be remedied by a rescaling procedure [25–27]. A mixed
Percus-Yevick/hypernetted chain integral equation also
has been used [28] and it was observed that it fits bet-
ter the simulation results [29] than the MSA and clus-
ter expansion [30,31]. The former however does not have
an analytical formulation. An analytical equation of state
for the HCOCP has been proposed in [32], as a sim-
ple generalization of the hole-corrected Debye-Hückel the-
ory [10], which in addition to the correlation hole around
charged particles takes into account the hard-core repul-
sion. This was used afterwards to develop a generalized
van der Waals theory [33]. The basic physical idea ex-
ploited in this theory is that due to the strong electrostatic
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repulsion a “hole” appears around a charged particle from
which all other particles are expelled. Outside the hole the
electrostatic interactions are not very strong and may be
described on the Debye-Hückel level; the size of the hole is
found self-consistently. Although being physically appeal-
ing, this theory does not give a satisfactory description for
large values of the plasma parameter Γ for the OCP [10],
and is also not accurate for the HCOCP for large pack-
ing fractions η (for η = 0.4 the deviations from MC data
for the internal energy reach 24% [32]). Recently an exact
low-density expansion for the free energy of the HCOCP
has been obtained [34]. This however can not be applied in
the case of strong electrostatic interaction, i.e. for large Γ .

In the present study we develop a theory which allows
to derive a fairly accurate and simple equation of state
for the HCOCP in the whole range of Γ from the Debye-
Hückel limit Γ � 1 up to the limit of strong coupling
Γ � 1. It reproduces within 1–3% accuracy the available
Monte Carlo (MC) data for 0.2 < Γ < 70. Larger de-
viations occur in the region where the MC data are not
very accurate (see the discussion below). As in the case
of the OCP [9] we use the Hubbard-Schofield transforma-
tion which yields a field-theoretical Hamiltonian for the
HCOCP with coefficients expressed in terms of equilib-
rium correlation functions of a reference hard-core fluid.
Although we perform the explicit calculations within the
Gaussian approximation for the effective Hamiltonian, one
can go beyond the Gaussian approximation using the
standard perturbation technique, provided the structural
properties of the reference hard-core fluid are known. Since
the obtained equation of state is in good agreement with
available MC data we use it to address the problem of ad-
ditivity of the hard-core and electrostatic contributions to
the excess free energy. This seems to be important since
it is usually assumed that these contributions are additive
(e.g. [35]) and the range of validity of such approximation
has not been studied yet.

The rest of the paper is organized as follows: in
Section 2 we briefly sketch the Hubbard-Schofield ap-
proach which yields the field-theoretical Hamiltonian for
the HCOCP. In Section 3 we derive the equation of
state within the Gaussian approximation for the effective
Hamiltonian, and compare the theoretical findings with
available Monte Carlo data. In that section we also analyse
the accuracy of the widely used approximation in which
the excess free energy is written as a sum of the hard-core
and electrostatic part. In the conclusion we summarize our
findings.

2 Field-theoretical Hamiltonian for HCOCP

We start from the HCOCP Hamiltonian with omitted
ideal part which may be written as follows (β−1 = kBT ):

H =
1
2
β−1

∑′

k

νk(ρkρ−k − ρ) +Hhc (1)

where the first term in the right-hand side of (1) refers to
the Coulomb interactions, written in terms of collective

density variables,

ρk =
1√
Ω

N∑
j=1

e−ikrj (2)

where rj denotes coordinate of jth particle,

νk = 4πlB/k2 (3)

is the Fourier-transformed Coulomb potential and Hhc de-
scribes the hard-sphere interaction. Summation in (1) is
to be performed over the wave vectors k = {kxkykz} with
ki = 2πli/L (i = x, y, z), where li are integers, L3 = Ω,
and the prime over the sum denotes that the term with
k = 0 is excluded [36].

2.1 Hubbard-Schofield transformation

The configurational integral may be written in terms of
the configurational integral of the reference (hard-sphere
liquid) system QR [37–39] as:

Q =

〈
exp

{
−1

2

∑′

k

νk(ρkρ−k − ρ)

}〉
R

QR (4)

where 〈(. . . )〉R = Q−1
R

∫
drN (. . . ) denotes the averag-

ing over the reference system. In accordance with the
Hubbard-Schofield scheme [37] we use the identity:

exp
(

1
2
a2x2

)
=

1√
2πa2

+∞∫
−∞

exp
(
−1

2
y2/a2 + ixy

)
dy

and arrive after some algebra at:

Q = QR

∫ ∏′

k

ckdϕk exp

{
−1

2

∑′

k

ν−1
k ϕkϕ−k

}

×
〈

exp

{
i
∑′

k

ρkϕ−k

}〉
R

(5)

where ck = (2πνk)−1/2 exp{νkρ/2}, and where the inte-
gration is to be performed under restriction, ϕ−k = ϕ∗k
(ϕ∗k is the complex conjugate of ϕk) [40]. Applying the cu-
mulant theorem [41] to the factor

〈
exp

{
i
∑′

k ρkϕ−k

}〉
R

one obtains:

Q = QR

∫ ∏′

k

ckdϕke−H, with

H =
∞∑
n=2

Ω1−n2
∑′

k1,...kn

un(k1, . . .kn)ϕk1 . . . ϕkn (6)

u2(k1,k2) =
1
2
δk1+k2,0

{
1
νk

+ 〈ρk1ρ−k1〉cR

}
un(k1, . . .kn) = −in

Ω
n
2−1

n!
〈ρk1 . . . ρkn〉cR n > 2
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here 〈. . . 〉cR denotes cumulant average [41] for the refer-
ence hard sphere fluid system. Note that (6) gives the field-
theoretical expression for the partition function with, ϕk

being the Fourier components of the scalar field ϕ(r) [42].
The coefficients of the effective Hamiltonian (6) are
expressed in terms of the correlation functions of the refer-
ence hard-core fluid. Using definitions of correlation func-
tions of fluids [43] and definitions of the cumulant aver-
ages [41], one can directly evaluate 〈ρk1 . . . ρkn〉cR (and
thus the coefficients un(k1, . . .kn)). It is straightforward
to show that 〈ρk1 . . . ρkn〉cR may be expressed in terms
of the Fourier transforms of the correlation functions
h2, h3, . . . , hn of the reference system, defined as [39]

h2(r1, r2) ≡ g2(r1, r2)− 1 (7)
h3(r1, r2, r3) ≡ g3(r1, r2, r3)− g2(r1, r2)− g2(r1, r3)

−g2(r2, r3) + 2, etc., (8)

where gl(r1, .., rl) – are l-particle correlation func-
tions [43]. In particular the second-order cumulant
〈ρkρ−k〉cR may be written as:

〈ρkρ−k〉cR = ρ
[
1 + ρh̃2(k)

]
, (9)

and the Fourier transform of the function h̃2(k) is related
to the direct correlation function c̃2(k)

h̃2(k) = c̃2(k)/[1− ρc̃2(k)], (10)

for which an explicit analytical expression is known [44].

2.2 Gaussian approximation for the effective
Hamiltonian

Now we concentrate on the Gaussian part of the effective
Hamiltonian, i.e. we skip all the terms with a power of
the field larger than two. The accuracy of this approxi-
mation has been critically examined in reference [13] for
the OCP without hard-core interactions by perturbatively
calculating higher-order terms. It was found that higher
order terms contribute very little to the free energy and
that the Gaussian approximation is in fact excellent over
the whole range of coupling parameters. One can therefore
assume, and this is indeed borne out by our comparison
with Monte-Carlo data below, that the Gaussian approx-
imation should also be quite good for the present case.
Using (10) and (9) we write for this case:

Q = QR

∫ ∏′

k

dϕk
exp(νkρ/2)√

2πνk

× exp

{
−1

2

∑′

k

ϕkϕ−k

(
1
νk

+
ρ

1− ρc̃2(k)

)}
· (11)

Performing (Gaussian) integration over ϕk we arrive after
some algebra at [40]:

Q = QR

∏′

kz>0

exp(νkρ)
νk

(
1
νk

+
ρ

1− ρc̃2(k)

)−1

· (12)

Taking the logarithm of the configuration integral one ob-
tains the free energy, and since the analytical expression
for c̃2(k) is available [44], no additional approximation is,
in principle, required. This leads, however, to an expres-
sion which is to be evaluated numerically. We note that
owing to the long-range nature of the Coulombic interac-
tions, the main contribution to the free energy comes from
the long-wave modes of the density fluctuations, which
correspond to small k. Therefore only the small-k behav-
ior of the direct correlation function is important. This
suggests to approximate c̃2(k) by a truncated expansion

c̃2(k) ' c̃2(0)− c̃2(0)′′k2 + . . . , (13)

which correctly behaves at small k. As we show in what fol-
lows, only wave-vectors with k < k0 contribute to the con-
figuration integral, thus we apply the approximation (13)
for the interval 0 < k < k0. By numerical evaluation
of the free energy using the full expression for c̃2(k), we
convinced ourselves that deviations of the quadratic form
from the actual c̃2(k) at larger k do not noticeably affect
the results [46]. We therefore do not require k and k0 to be
small since the particular behavior of c̃2(k) for large k is
not important. On the other hand, the quadratic approx-
imation allows to obtain an analytical equation of state
for the HCOCP that reproduces fairly well the available
Monte Carlo data. With (13) one can write for the config-
urational integral:

Q = QR

∏′

kz>0

exp(νkρ)
νk

×
(

1
νk

+
ρ

1− ρc̃2(0)
− k2 ρ2c̃2(0)′′

(1− ρc̃2(0))2

)−1

· (14)

The most accurate estimate for c̃2(0) may be found, using
c̃2(0) = h̃2(0)/(1 + ρh̃2(0)) from (10) and the relation for
the isothermal compressibility χ−1

R = ρ(∂PR/∂ρ)β [43],
where PR is the pressure of the reference system [47]:

1 + ρh̃2(0) = ρkBTχR ≡ Z0. (15)

The value of Z0 follows from the fairly accurate Carnahan-
Starling free energy of hard-sphere fluid [48]:

βFhc

N
=

4η − 3η2

(1− η)2
, (16)

where η = πρd3/6 is the packing fraction and d is the di-
ameter of the spheres; this yields Z0 as a second derivative
of Fhc with respect to density:

Z0 = (1− η)4(1 + 4η + 4η2 − 4η3 + η4)−1. (17)

Using the Wertheim-Thiele solution for the direct correla-
tion function c2(r) [44] and definition of c2(0)′′ from equa-
tion (13) one obtains:

c̃2(0)′′ =
1
2

∫
r2c2(r)dr

= −(πd5/120)(16− 11η + 4η2)(1− η)−4. (18)
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With c̃′′(0) from (18) and c̃2(0) = (Z0−1)/(ρZ0) from (10)
and (15) we arrive at the following expression for the con-
figurational integral

Q = QR

∏′

kz>0

exp(ρνk) (ρνkZ0 +Θ)−1 (19)

where Θ = 1− 4πlB(ρZ0)2c̃′′2(0).

3 Equation of state for the HCOCP

3.1 Equation of state and its accuracy

Now we show that within the Gaussian approximation
to the effective Hamiltonian, one obtains rather accurate
equation of state for HCOCP provided that an appropri-
ate value of the “ultraviolet cutoff” in the k-space is em-
ployed. From (19) we find for the excess free energy of the
HCOCP:

−βFex = ln(Q)

= −βFhc +
1
2

∑′

k

[ρνk − ln(ρνkZ0 +Θ)]. (20)

Now we argue that the summation in (20) should be car-
ried out over a finite number of the wave-vectors k. In this
we follow the Debye theory of the specific heat of solids
(e.g. [49]). Namely, we assume that the total number of
degrees of freedom in the system, 3N , should be equal to
the total number of physically different modes with the
wave-vectors k within the spherical shell of radius k0 in
the k-space. The number of modes is twice the number
of the wave-vectors, since for each k one has a sine and
cosine mode (the amplitude of the kth mode is a complex
number) [50]. Thus we obtain:

2
Ω

8π3
4π
∫ k0

0

k2dk = 3N (21)

where the factorΩ/8π3 appears when the integration in k-
space is used instead of summation. From (21) follows that

k0 = (9ρπ2)1/3.

A similar Debye-like scheme to find the cutoff k0 was first
proposed for plasma in [51], where a somewhat different
value of the cutoff wave-vector was reported. Using k0 as
obtained above we write:

βFex

N
=
βFhc

N
+

1
2
Ω

8π3

4π
N

∫ k0

0

k2dk [ln (ρνkZ0+Θ)−ρνk]

=
βFhc

N
+

9
4

∫ 1

0

x2dx
[
ln
(
Θ+

bΓZ0

x2

)
−bΓ
x2

]
, (22)

where x = k/k0, so that ρνk = 4πlBρ/(k0x)2 = bΓ/x2

(see (3) for the definition of νk), and where we define the

constant b = (2/3)
(
2/π2

)1/3. The last integral is easily
evaluated and yields for the excess free energy

Fex

kBTN
=

4η − 3η2

(1− η)2

+
3
4

[
ln (Θ + bΓZ0)− bΓ

(
3− 2Z0

Θ

)]
−3

2

(
bΓZ0

Θ

) 3
2

arctan

(√
Θ

bΓZ0

)
(23)

with

Θ = 1 +
6
5

e2

dkBT

η2(1− η)4(16− 11η + 4η2)
(1 + 4η + 4η2 − 4η3 + η4)2

(24)

and for the excess internal energy, Uex =
−T 2∂(Fex/T )/∂T of the HCOCP

Uex

kBTN
=

9
4

[
bΓZ0

Θ
− bΓ −

(
bΓZ0

Θ

) 3
2

arctan

(√
Θ

bΓZ0

)]
· (25)

For η = 0, equations (23, 25) recover the corresponding
result for the one component plasma [9].

As it follows from (23) and (25), for Γ → 0 and
η → 0 the Debye-Hückel behavior is obtained. In the op-
posite limit Γ � 1 and for any packing fraction η equa-
tions (23, 25) demonstrate a linear behavior on Γ . The
leading term for this case is −AΓ , where the constant A
reads:

A =
9
4
b =

3
2

(
2
π2

)1/3

= 0.881 . . .

This is fairly close to the constant A = 0.899 . . . of the
fits for the OCP (see e.g. [52,53]).

For arbitrary values of η and Γ we compare our ana-
lytical expression for the excess internal energy (25) with
the available MC data for the HCOCP (Fig. 1). Figure 2
shows the relative error of the analytical expression (25).
As it follows from Figures 1 and 2 the equation of state
is fairly accurate in full range of plasma parameters for
which MC data are available. For Γ > 1 the relative error
does not exceed 1−3% for all values of packing fraction
and plasma parameter. For Γ > 10 one observes the lin-
ear behavior and deviation from the numerical data for
this range of Γ less than 1%.

The maximal deviation of the analytical expression
from the MC data occurs for 0.2 < Γ < 1. In this range
of the plasma parameter the deviation is about 5% with
the maximal one of 12% at the smallest value Γ = 0.2. It
should be noted however, that such deviation occurs for Γ ,
where the method of MC loses its accuracy. Moreover, we
expect that for very small packing fraction, η = 0.001,
where the maximal deviation is observed, the contribution
to the internal energy due to the hard-core interactions
may not exceed 1%. Therefore for this η the difference be-
tween Uex of the HCOCP and Uex of the OCP is less then
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Fig. 1. Shows the dependence of the excess internal energy of
the HCOCP Uex/NkBT on the plasma parameter Γ = lB/ac
(lB = e2/kBT , ac = (3/4πρ)1/3) for different values of the
packing fraction η = (π/6)d3ρ .The curves from top to bottom
correspond to η = 0.001, η = 0.005, η = 0.020, η = 0.100
and η = 0.400, respectively. Points give the Monte Carlo
data [29,32]: circles correspond to η = 0.001, squares to
η = 0.005, triangles to η = 0.020, diamonds to η = 0.100
and down triangles to η = 0.400, respectively. In the inset the
same dependence is shown for larger range of Γ .
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Fig. 2. Gives the relative error of the analytical expression (25)
for excess internal energy of the HCOCP Uex/NkBT as a func-
tion of the plasma parameter Γ . Notations are the same as in
Figure 1.

1%. It has been already shown that the analytical equa-
tion of state for the OCP (which follows from (25) for
η = 0) has the accuracy of 8% [9]. Thus we expect that
the accuracy of our equation of state may not be worse
than 9% for these values of η; the observed deviation of
12% seems to be the manifestation of the low accuracy of
MC for this range of parameters.

3.2 Additivity of the hard-core and electrostatic
components of the free energy

With the equation of state obtained we can analyse the
accuracy of the widely used approximation for the excess
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Fig. 3. Compares the “complete” equation of state,
Fex,HCOCP (23), for the free energy of the HCOCP (solid lines)
with the approximate one, given as the sum of the free en-
ergy of the point particle OCP and that of the hard-core fluid,
Fex,OCP + Fhc (dashed lines). The curves from top to bottom
correspond respectively to η = 0.42, η = 0.2 and η = 0.05. In
the inset the same dependence is shown for larger range of Γ .

free energy, which represents this as a sum of the hard-core
and electrostatic component, Fhc +Fex,OCP (see e.g. [35]).
The validity of this approximation may be checked by
the direct comparison of the excess free energy of the
HCOCP Fex,HCOCP and the above sum. For Fex,HCOCP

we use our equation of state (23) and equation of state
for OCP from [9] (this expression for Fex,OCP may be ob-
tained from equation (23) for η = 0). For Fex,hc we use
the Carnahan-Starling equation (16). In Figure 3 we com-
pare the “complete” equation of state (solid lines) with
the approximate, based on the assumption of additivity
of the hard-core and electrostatic parts (dashed lines). As
it follows from Figure 3 for small Γ the values of the free
energy from the “complete” and approximate equations
of state may differ significantly; they may even have dif-
ferent signs. The relative difference becomes smaller with
increasing Γ (see inset to Fig. 3) and decreasing packing
fraction. For Γ > 50 the approximation reaches the rea-
sonable accuracy: the error does not exceed 5% for all η.
For small packing fractions, η < 0.1 one has the same
accuracy already for Γ > 10.

4 Results and discussion

A “first-principle” equation of state for the classical hard-
core one component plasma is obtained that has a correct
Debye-Hückel behavior at the limit of small plasma pa-
rameter Γ and small packing fractions (Γ → 0, η → 0).
It demonstrates a linear dependence on Γ for any pack-
ing fraction if Γ � 1. The obtained coefficient 0.881 at
the linear leading term in this case is close to the corre-
sponding coefficient 0.899 found for the one component
plasma in the Monte Carlo simulations. The simple ana-
lytical expression for the excess internal energy reproduces
the available MC data with an accuracy of 1−3% for the
most range of Γ and η. The maximal deviation of 12% is
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observed for small Γ and η, where the MC method is not
very accurate, and we argue that such deviation does not
reflect the accuracy of our equation.

To derive the equation of state we apply the Hubbard-
Schofield transformation to obtain the field theoretical
Hamiltonian for the HCOPC and use the Gaussian ap-
proximation. The Gaussian approximation assumes that
one can neglect all terms in the effective Hamiltonian
which contain the power of field higher than two. As it was
shown by the field theoretical calculations for the case of
the one component plasma (without the hard-core) [13],
the corrections to the Gaussian theory are rather small,
and we expect that the same is true for the system of
interest. Physically, this implies that the higher-order co-
efficients in the field theoretical Hamiltonian are smaller
than that at the second order of the field. In this case the
contribution to the field integral from the field-amplitude
domain where the higher-order terms dominate is small:
the main contribution comes from the domain where the
Gaussian term prevails. Generally, the Gaussian approx-
imation fails near the critical point, where the Gaussian
term of the effective Hamiltonian becomes small and even
vanishes [39]. For the HCOCP we do not expect any crit-
icality and thus the Gaussian approximation is expected
to be valid.

To obtain the analytical expression for the equation of
state we also approximate the Fourier transform of the di-
rect correlation function of the reference hard-core system
c̃2(k) by its small-k expansion. Although such approxi-
mation deviates from the actual dependence of c̃2(k) at
larger k, this does not eventually affect the equation of
state: owing to the long-range nature of the Coulombic
interactions, only the small-k behavior of c̃2(k) is impor-
tant; this is correctly reproduced by the approximation.

We also analyse the validity of the widely used approx-
imation, where the free energy of the HCOCP is repre-
sented as a sum of the hard-core and electrostatic compo-
nent. We show that such approximation is rather accurate
for small packing fraction and large plasma parameter. In
the opposite case of large η and small Γ the excess free
energy may not be adequately represented by a sum of a
hard-core and electrostatic part.

Thus we conclude that in general case one has to use
the complete equation of state. The proposed one pos-
sesses a reasonable accuracy for the whole range of pa-
rameters for the system of interest.
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